Legendre functions, spherical rotations, and multiple elliptic integrals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of Elliptic Integrals to Legendre Normal Form

It is well known that any elliptic integral can be transformed into a linear combination of elementary functions and Legendre’s three Elliptic functions. Methods for transforming these integrals to the Legendre form are described in numerous papers and textbooks. However, when it comes to actually designing and implementing such a reduction algorithm the existing methods require significant mod...

متن کامل

Fast Computation of Complete Elliptic Integrals and Jacobian Elliptic Functions

As a preparation step to compute Jacobian elliptic functions efficiently, we created a fast method to calculate the complete elliptic integral of the first and second kinds, K(m) and E(m), for the standard domain of the elliptic parameter, 0 < m < 1. For the case 0 < m < 0.9, the method utilizes 10 pairs of approximate polynomials of the order of 9 to 19 obtained by truncating Taylor series exp...

متن کامل

Integrals involving complete elliptic integrals

We give a closed-form evaluation of a number of Erd elyi-Kober fractional integrals involving elliptic integrals of the rst and second kind, in terms of the 3F2 generalized hypergeometric function. Reduction formulae for 3F2 enable us to simplify the solutions for a number of particular cases. c © 1999 Elsevier Science B.V. All rights reserved.

متن کامل

Generalizations and Specializations of Generating Functions for Jacobi, Gegenbauer, Chebyshev and Legendre Polynomials with Definite Integrals

In this paper we generalize and specialize generating functions for classical orthogonal polynomials, namely Jacobi, Gegenbauer, Chebyshev and Legendre polynomials. We derive a generalization of the generating function for Gegenbauer polynomials through extension a two element sequence of generating functions for Jacobi polynomials. Specializations of generating functions are accomplished throu...

متن کامل

Recursive computation of derivatives of elliptic functions and of incomplete elliptic integrals

Presented are the recurrence formulas to compute the derivatives of a general elliptic function, Weierstrass’s ℘ function, the Jacobian elliptic functions, and the incomplete elliptic integrals in the forms of Jacobi and Legendre with respect to the argument or the amplitude. The double precision computation by the formulas is correct with 15 digits or so for the first 10 orders of differentiat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Ramanujan Journal

سال: 2013

ISSN: 1382-4090,1572-9303

DOI: 10.1007/s11139-013-9502-2